Cross-frequency coupling between slow harmonics via the real brainstem oscillators: An in vivo animal study

Author:

Kawai YoshinoriORCID

Abstract

Brain waves of discrete rhythms (gamma to delta frequency ranges) are ubiquitously recorded and interpreted with respect to probable corresponding specific functions. The most challenging idea of interpreting varied frequencies of brain waves has been postulated as a communication mechanism in which different neuronal assemblies use specific ranges of frequencies cooperatively. One promising candidate is cross-frequency coupling (CFC), in which some neuronal assemblies efficiently utilize the fastest gamma range brain waves as an information carrier (phase-amplitude CFC); however, phase-phase CFC via the slowest delta and theta waves has rarely been described to date. Moreover, CFC has rarely been reported in the animal brainstem including humans, which most likely utilizes the slowest waves (delta and theta ranges). Harmonic waves are characterized by the presence of a fundamental frequency with several overtones, multiples of the fundamental frequency. Rat brainstem waves seemed to consist of slow harmonics with different frequencies that could cooperatively produce a phase-phase CFC. Harmonic rhythms of different frequency ranges can cross-couple with each other to sustain robust and resilient consonance via real oscillators, notwithstanding any perturbations.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3