Visual Acuity for Moving Objects in First- and Second-Order Neurons of the Fly Compound Eye

Author:

Juusola Mikko1,French Andrew S.1

Affiliation:

1. Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada; and Department of Physiology, University of Oulu, 90220 Oulu, Finland

Abstract

Juusola, Mikko and Andrew S. French. Visual acuity for moving objects in first- and second-order neurons of the fly compound eye. J. Neurophysiol. 77: 1487–1495, 1997. The early stages of visual systems contain a variety of components that limit both the spatial resolution and the temporal resolution of vision. When an animal sees a moving object, or moves relative to its environment, both spatial and temporal factors contribute to its ability to resolve the movement. In the present work we have combined currently available knowledge about the early stages of fly vision (optical system, photoreceptors, and large monopolar cells) to predict the resolution of the first two cell layers to moving point objects. These calculations included recent measurements of nonlinear light responses. Because background light level has a strong effect on the temporal behavior of these early visual layers, we examined the effects of light level on motion resolution. We also studied the effect of position within the eye, which is known to affect the static resolution of vision. Our results indicate that responses in large monopolar cells to moving point objects are maximal at angular velocities of 100–200°/s. The resolution of point objects by both these early stages of the visual system is similar from stationary to an angular velocity of ∼200°/s. Above this, resolution deteriorates approximately linearly with velocity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3