On the Detection and Measurement of Synchrony in Neural Populations by Coherence Analysis

Author:

Christakos Constantinos N.1

Affiliation:

1. Department of Basic Sciences, Medical School, University of Crete, 71110 Heraklion, Greece; and Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032

Abstract

Christakos, Constantinos N. On the detection and measurement of synchrony in large neural populations by coherence analysis. J. Neurophysiol. 78: 3453–3459, 1997. This study considers the possibility of using coherence analysis for detection and measurement of synchrony (correlations) in large neural populations, applied to activities that are relatively easy to record in parallel. Mathematical analysis and computer simulations are used to examine the behavior of the coherence function between both unitary and population-aggregate activity (UTA coherence) and the aggregate activities of two populations (ATA coherence). The results indicate that for a large population showing partial correlations, the UTA coherence function is almost zero at all frequencies for the uncorrelated units. However, unless the synchrony is very restricted, its value is nonzero (i.e., statistically significant by common criteria) at each frequency of synchrony for the units that show correlations to other units. Moreover, this value is indicative of the strength of synchrony for any given unit. These properties enable the identification of the correlated units in a sample of unit/population activities simultaneously recorded in a series of experiments, and hence the detection of synchrony. The extent of synchrony can then be estimated as the fraction of such units in the sample, whereas the values of the UTA coherences in the sample can be used to estimate the strength and its distribution within the population. Similarly, the ATA coherence function is generally nonzero (significant) at the frequencies where there are correlations between members of two large populations. This enables the easy detection of such correlations from simultaneously recorded population activities. However, this function is a very sensitive index of synchrony and even shows saturation effects. It may therefore be used as a general measure of synchrony only under restricted conditions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3