Sensitivity of EMG-EMG coherence to detect the common oscillatory drive to hand muscles in young and older adults

Author:

Keenan Kevin G.1,Massey William V.1,Walters Tygh J.1,Collins Joseph D.1

Affiliation:

1. University of Wisconsin-Milwaukee, Milwaukee, Wisconsin

Abstract

Multichannel surface electromyograms (EMGs) were used to examine the sensitivity of EMG-EMG coherence to infer changes in common oscillatory drive to hand muscles in young and older adults. Previous research has shown that measures of coherence calculated from different neurophysiological signals are influenced by the age of the subject, the visual feedback provided to the subject, and the task being performed. The change in the magnitude of EMG-EMG coherence across experimental conditions is often interpreted as a change in the oscillatory drive to motoneuron pools of a pair of muscles. However, signal processing (e.g., full-wave rectification) and electrode location are also reported to influence EMG-EMG coherence, which could decrease the sensitivity of EMG-EMG coherence to infer a change in common oscillatory drive to motoneurons. In this study, multichannel EMGs were used to compare EMG-EMG coherence in young ( n = 11) and older ( n = 10) adults during index finger abduction and pinch grip tasks performed at 2 and 3.5 N with a low and a high visual feedback gain. We found that, across all conditions, EMG-EMG coherence was influenced by electrode location ( P < 0.001) but not by subject age, visual feedback gain, task, or signal processing. These results suggest that EMG-EMG coherence is most sensitive to electrode location. The results are discussed in terms of the potential issues related to inferring a common oscillatory drive to hand muscles with surface EMGs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the Impact of Collaborative Robots in E-Waste Disassembly Through EMG-EMG Coherence Analysis;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2024-09-09

2. Influence of visual feedback and cognitive challenge on the age-related changes in force steadiness;Experimental Brain Research;2024-04-13

3. A Dilemma for Coherence Calculation: Should Preprocessing Filters Be Applied?;Frontiers in Neuroscience;2022-02-10

4. Common Neural Input within and across Lower Limb Muscles: A Preliminary Study;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

5. EEG hyperscanning in motor rehabilitation: a position paper;Journal of NeuroEngineering and Rehabilitation;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3