Affiliation:
1. University of Shanghai for Science and Technology, China
2. University of Florida, Gainesville, USA
Abstract
With the advance of human-robot collaboration (HRC), collaborative robots (cobots) have emerged as solutions to alleviate the manual tasks involved in electronic waste (e-waste) disassembly. This study employed surface electromyography (EMG) to investigate whether cobots can enhance muscle coordination. EMG-EMG coherence in both beta and gamma bands was calculated from 22 participants to quantify coordination between four muscle groups—biceps brachii (BB), brachioradialis (BR), upper trapezius (UT), and erector spinae (ES). Comparison results showed that after the introduction of the cobot, significant increases in left BR&BB, BR&UT, BR&ES, and BB&UT pairs, right BR&BB, BR&UT, and BB&ES pairs, and bilateral BR pair were observed. Notably, left BR&ES presented the most substantial increase at 18.88% and 26.39% in the beta and gamma bands, respectively ( p < .05). These findings suggest that cobots hold potential to enhance muscle coordination during e-waste disassembly, thereby shedding light on the construction of HRC-based e-waste disassembly systems.
Funder
National Science Foundation