Glutamatergic N2v Cells Are Central Pattern Generator Interneurons of the Lymnaea Feeding System: New Model for Rhythm Generation

Author:

Brierley M. J.1,Yeoman M. S.1,Benjamin P. R.1

Affiliation:

1. Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, United Kingdom

Abstract

Brierley, M. J., M. S. Yeoman, and P. R. Benjamin. Glutamatergic N2v cells are central pattern generator interneurons of the Lymnaea feeding system: new model for rhythm generation. J. Neurophysiol. 78: 3396–3407, 1997. We aimed to show that the paired N2v (N2 ventral) plateauing cells of the buccal ganglia are important central pattern generator (CPG) interneurons of the Lymnaea feeding system. N2v plateauing is phase-locked to the rest of the CPG network in a slow oscillator (SO)-driven fictive feeding rhythm. The phase of the rhythm is reset by artificially evoked N2v bursts, a characteristic of CPG neurons. N2v cells have extensive input and output synaptic connections with the rest of the CPG network and the modulatory SO cell and cerebral giant cells (CGCs). Synaptic input from the protraction phase interneurons N1M (excitatory), N1L (inhibitory), and SO (inhibitory-excitatory) are likely to contribute to a ramp-shaped prepotential that triggers the N2v plateau. The prepotential has a highly complex waveform due to progressive changes in the amplitude of the component synaptic potentials. Most significant is the facilitation of the excitatory component of the SO → N2v monosynaptic connection. None of the other CPG interneurons has the appropriate input synaptic connections to terminate the N2v plateaus. The modulatory function of acetylcholine (ACh), the transmitter of the SO and N1M/N1Ls, was examined. Focal application of ACh (50-ms pulses) onto the N2v cells reproduced the SO → N2v biphasic synaptic response but also induced long-term plateauing (20–60 s). N2d cells show no endogenous ability to plateau, but this can be induced by focal applications of ACh. The N2v cells inhibit the N3 tonic (N3t) but not the N3 phasic (N3p) CPG interneurons. The N2v → N3t inhibitory synaptic connection is important in timing N3t activity. The N3t cells recover from this inhibition and fire during the swallow phase of the feeding pattern. Feedback N2v inhibition to the SO, N1L protraction phase interneurons prevents them firing during the retraction phase of the feeding cycle. The N2v → N1M synaptic connection was weak and only found in 50% of preparations. A weak N2v → CGC inhibitory connection prevents the CGCs firing during the rasp (N2) phase of the feeding cycle. These data allowed a new model for the Lymnaea feeding CPG to be proposed. This emphasizes that each of the six types of CPG interneuron has a unique set of synaptic connections, all of which contribute to the generation of a full CPG pattern.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3