Behavioral Function of Glutamatergic Interneurons in the Feeding System of Lymnaea: Plateauing Properties and Synaptic Connections with Motor Neurons

Author:

Brierley Matthew J.1,Staras Kevin1,Benjamin Paul R.1

Affiliation:

1. Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, United Kingdom

Abstract

Brierley, Matthew J., Kevin Staras, and Paul R. Benjamin. Behavioral function of glutamatergic interneurons in the feeding system of Lymnaea: plateauing properties and synaptic connections with motor neurons. J. Neurophysiol. 78: 3386–3395, 1997. Intracellular recording techniques were used to examine the electrical properties and behavioral function of a novel type of retraction phase interneuron, the N2 ventral (N2v) cells in the feeding network of the snail Lymnaea. The N2vs were compared with the previously identified N2 cells that now are renamed the N2 dorsal (N2d) cells. The N2vs are a bilaterally symmetrical pair of electrotonically coupled plateauing interneurons that are located on the ventral surfaces of the buccal ganglia. Their main axons project to the opposite buccal ganglion, but they have an additional fine process in the postbuccal nerve. N2v plateaus that outlast the duration of the stimulus can be triggered by depolarizing current pulses and prematurely terminated by applied hyperpolarizing pulses. Gradually increasing the amplitude of depolarizing pulses reveals a clear threshold for plateau initiation. N2v plateauing persists in a high Mg2+/nominally zero Ca2+ saline that blocks chemical synaptic connections, suggesting an endogenous mechanism for plateau generation. The N2vs fire sustained bursts of action potentials throughout the N2/rasp phase of the fictive feeding cycle and control the retraction phase feeding motor neurons. The N2vs excite the B3 and B9 feeding motor neurons to fire during the rasp phase of the feeding cycle. They also inhibit the B7 and B8 feeding motor neurons. The B8 cells recover from inhibition and fire during the following swallowing phase. These synaptic connections appear to be monosynaptic as they persist in high Mg2+/high Ca2+ (HiDi) saline that blocks polysynaptic pathways. Strong current-induced plateaus in the N2vs generate brief inhibitory postsynaptic responses in the B4CL rasp phase motor neurons, but this was due to the indirect N2v → N2d → B4CL pathway. The N2vs are coupled electrotonically to the N2d cells, and triggering plateau in a N2v usually induced one or two spikes in a N2d. Previous experiments showed that the N2ds generate plateau potentials during a fictive feeding cycle. Here we show that the main component of the “plateauing” waveform is due to the electrotonic coupling with the N2v cells. The differential synaptic connections of the N2v and N2d cells with retraction phase motor neurons results in a sequence of motor neuron burst activity B9 → B4CL → B8 that produces the full retraction (rasp → swallow) movements of the feeding apparatus (buccal mass). We conclude that the N2v cells are an essential component of the interneuronal network required to produce feeding motor neuron activity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3