Predictive encoding of motor behavior in the supplementary motor area is disrupted in parkinsonism

Author:

Hendrix Claudia M.1,Campbell Brett A.1,Tittle Benjamin J.1,Johnson Luke A.1,Baker Kenneth B.1,Johnson Matthew D.2ORCID,Molnar Gregory F.1,Vitek Jerrold L.1

Affiliation:

1. Department of Neurology, University of Minnesota, Minneapolis, Minnesota

2. Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota

Abstract

Many studies suggest that Parkinson’s disease (PD) is associated with changes in neuronal activity patterns throughout the basal ganglia-thalamocortical motor circuit. There are limited electrophysiological data, however, describing how parkinsonism impacts the presupplementary motor area (pre-SMA) and SMA proper (SMAp), cortical areas known to be involved in movement planning and motor control. In this study, local field potentials (LFPs) were recorded in the pre-SMA/SMAp of a nonhuman primate during a visually cued reaching task. Recordings were made in the same subject in both the naive and parkinsonian state using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of parkinsonism. We found that in the naive animal, well before a go-cue providing instruction of reach onset and direction was given, LFP activity was dynamically modulated in both high (20–30 Hz) and low beta (10–20 Hz) bands, and the magnitude of this modulation (e.g., decrease/increase in beta amplitude for each band, respectively) correlated linearly with reaction time (RT) on a trial-to-trial basis, suggesting it may predictively encode for RT. Consistent with this hypothesis, we observed that this activity was more prominent within the pre-SMA compared with SMAp. In the parkinsonian state, however, pre-SMA/SMAp beta band modulation was disrupted, particularly in the high beta band, such that the predictive encoding of RT was significantly diminished. In addition, the predictive encoding of RT preferentially within pre-SMA over SMAp was lost. These findings add to our understanding of the role of pre-SMA/SMAp in motor behavior and suggest a fundamental role of these cortical areas in early preparatory and premovement processes that are altered in parkinsonism. NEW & NOTEWORTHY Goal-directed movements, such as reaching for an object, necessitate temporal preparation and organization of information processing within the basal ganglia-thalamocortical motor network. Impaired movement in parkinsonism is thought to be the result of pathophysiological activity disrupting information flow within this network. This work provides neurophysiological evidence linking altered motor preplanning processes encoded in pre-SMA/SMAp beta band modulation to the pathogenesis of motor disturbances in parkinsonism.

Funder

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3