Spatial and temporal response properties of the vestibulocollic reflex in decerebrate cats

Author:

Baker J.,Goldberg J.,Peterson B.

Abstract

Vestibulocollic reflex responses of several neck muscles in decerebrate cats were studied during angular rotations of the whole body in a large number of vertical and horizontal rotation planes, at frequencies from 0.07 to 1.6 Hz. Vestibulocollic responses were compared to eye muscle and forelimb muscle vestibular responses. Electromyographic activity was recorded by fine wires inserted in biventer cervicis, complexus, longus capitis, obliquus capitis inferior, occipitoscapularis, rectus capitis major, splenius, lateral rectus, and triceps brachii. At frequencies of approximately 0.5 Hz and above, neck muscle electromyographic response gains were sinusoidal functions of stimulus orientation within a set of vertical or horizontal planes, and a muscle's response phase remained constant across rotation planes, or reversed by 180 degrees. Response patterns at high frequencies were consistent with vestibulocollic reflex activation by semicircular canals through brain circuitry that modifies canal dynamics. At frequencies of approximately 0.5 Hz and above, the stimulus orientation in which a given neck muscle's response was maximal remained nearly constant across frequencies. Thus, we used responses to rotations at high frequencies to calculate axes of maximal response of each muscle in three-dimensional space. Lateral rectus, obliquus, and to a lesser extent, splenius and longus capitus were activated predominantly by horizontal rotations. Biventer was activated predominantly by pitch, triceps predominantly by roll, and complexus, occipitoscapularis, and rectus major significantly excited by rotations in all three coordinate planes. In some cases, at frequencies less than 0.5 Hz, neck muscle response phase varied depending on the vertical plane in which the cat was rotated, and the optimal response plane was poorly defined and varied with frequency. These responses indicated that, at some frequencies, neck muscle activity can result from summation of inputs with differing spatial orientation and dynamics (spatial-temporal convergence). Differences between responses to vertical and horizontal rotations suggested that low-frequency spatial-temporal convergence behavior of the vestibulocollic reflex during vertical rotations was due to convergent semicircular canal and otolith receptor inputs.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task-Specific Differentiation of Central Vestibular Neurons and Plasticity During Vestibular Compensation;The Senses: A Comprehensive Reference;2020

2. Vestibulo-Spinal Pathways in Tetrapods;The Senses: A Comprehensive Reference;2020

3. Gravito-inertial ambiguity resolved through head stabilization;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-03

4. Frequency‐dependent deficits in head steadiness in patients with nonspecific neck pain;Physiological Reports;2019-03

5. Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots;Springer Tracts in Advanced Robotics;2018-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3