Volume expansion during NOS substrate donation with l-arginine: regulatory offsetting of renal response?

Author:

Andersen Jens Lundbæk1,Sandgaard Niels C. F.2,Bie Peter2

Affiliation:

1. Department of Medical Physiology, University of Copenhagen, DK-2200; and

2. Department of Physiology and Pharmacology, University of Southern Denmark, DK-5000 Odense, Denmark

Abstract

The responses to infusion of nitric oxide synthase substrate (l-arginine 3 mg · kg−1 · min−1) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. l-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 ± 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 ± 0.0 to 0.7 ± 0.1 ml/min). Volume expansion increased arterial blood pressure (102 ± 3 to 114 ± 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 ± 31 μmol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 ± 1.7 to 1.6 ± 0.3 pg/ml). Combined volume expansion and l-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 ± 23 μmol/min at plasma ANG II levels of 3.0 ± 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, l-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus l-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Renal cortical and medullary blood flow during modest saline loading in humans;Acta Physiologica;2012-05-02

2. Exaggerated natriuresis during clamping of systemic NO supply in healthy young men;Clinical Science;2011-09-20

3. Body sodium and volume homeostasis;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2003-07

4. Mechanisms of acute natriuresis in normal humans on low sodium diet;The Journal of Physiology;2003-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3