Exaggerated natriuresis during clamping of systemic NO supply in healthy young men

Author:

Simonsen Jane A.12,Rasmussen Mona S.1,Vach Werner3,Høilund-Carlsen Poul F.2,Bie Peter1

Affiliation:

1. Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark

2. Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark

3. Clinical Epidemiology, Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Freiburg, Germany

Abstract

NO (nitric oxide) may be involved in fluid homoeostasis. We hypothesized that increases in NO synthesis contribute to acute, saline-induced natriuresis, which, therefore, should be blunted when NO availability is stabilized. Young men were studied during simultaneous infusions of L-NAME [NG-nitro-L-arginine methyl ester; bolus of 750 μg·kg−1 of body weight and 8.3 μg·min−1·kg−1 of body weight] and SNP (sodium nitroprusside), the latter at a rate preventing L-NAME from increasing total peripheral resistance (‘NO-clamping’). Slow volume expansion (saline, 20 μmol of NaCl·min−1·kg−1 of body weight for 3 h) was performed with and without concomitant NO-clamping. NO-clamping itself decreased RPF (renal plasma flow; P~0.02) and tended to decrease arterial blood pressure [MABP (mean arterial blood pressure)]. Volume expansion markedly decreased the plasma levels of renin, AngII (angiotensin II) and aldosterone (all P<0.001), while MABP (oscillometry), heart rate, cardiac output (impedance cardiography), RPF (by p-aminohippurate), GFR [glomerular filtration rate; by using 51Cr-labelled EDTA] and plasma [Na+] and [K+] remained constant. Volume expansion increased sodium excretion (P<0.02) at constant filtered load, but more so during NO-clamping than during control (+184% compared with 52%; P<0.0001). Urinary nitrate/nitrite excretion increased during volume expansion; plasma cGMP and plasma vasopressin were unchanged. The results demonstrate that NO-clamping augments sodium excretion in response to volume expansion at constant MABP and GFR, reduced RPF and decreased renin system activity, a response termed hypernatriuresis. The results indicate that mediator(s) other than MABP, RPF, GFR and renin system activity contribute significantly to the homoeostatic response to saline loading, but the specific mechanisms of hypernatriuresis remain obscure.

Publisher

Portland Press Ltd.

Subject

General Medicine

Reference52 articles.

1. Blood volume, blood pressure and total body sodium: internal signalling and output control;Bie;Acta Physiol.,2009

2. Subpressor angiotensin infusion, renal sodium handling, and salt-induced hypertension in the dog;DeClue;Circ. Res.,1978

3. Blood pressure and renal function during chronic changes in sodium intake: role of angiotensin;Hall;Am. J. Physiol.,1980

4. The renin-angiotensin system;Le,2008

5. Volume natriuresis vs. pressure natriuresis;Bie;Acta Physiol. Scand.,2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3