The effect of the fraction of inspired oxygen on the NIRS-derived deoxygenated hemoglobin “breakpoint” during ramp-incremental test

Author:

Azevedo Rafael de Almeida1,Béjar Saona Jorge E.1,Inglis Erin Calaine1,Iannetta Danilo1,Murias Juan M.1ORCID

Affiliation:

1. Faculty of Kinesiology, University of Calgary, Calgary, Canada

Abstract

During ramp-incremental (RI) exercise to exhaustion, the near-infrared spectroscopy-derived deoxygenated hemoglobin ([HHb]) signal in the vastus lateralis muscle shows a linear increase up to a point at which a plateau-like response is manifested ([HHb]bp). This study investigated if 1) the [HHb]bp is affected by different fractions of inspired O2 ([Formula: see text]) [hypoxia (16%; HYPO); normoxia (21%; NORM); hyperoxia (30%; HYPER)]; and 2) an abrupt change to hyperoxic-inspired gas just before the occurrence of the [HHb]bp (HYPERSWITCH) would affect the [HHb] plateau-like response. Ten physically active male participants reported to the laboratory on four separate occasions to perform an RI test to exhaustion in NORM, HYPO, and HYPER and an RI test to exhaustion with an abrupt increase in [Formula: see text] (30%; HYPERSWITCH) 15 W before the power output (PO) associated with [HHb]bp in normoxia. PO, [HHb], tissue O2 ([Formula: see text]), and pulse O2 saturation ([Formula: see text]) were recorded continuously. Peak PO was significantly lower in HYPO (290 ± 21 W) and higher in HYPER (321 ± 22 W) and HYPERSWITCH (320 ± 19 W) compared with NORM (311 ± 18 W). The PO associated with [HHb]bp was not different between NORM and HYPER (246 ± 23 vs. 247 ± 24 W), but it was lower in HYPO (198 ± 31 W) than NORM and HYPER. The PO associated with the [HHb]bp in HYPERSWITCH (240 ± 23) was not different compared with NORM. HYPER and HYPERSWITCH resulted in greater [Formula: see text] and [Formula: see text] compared with NORM. These results suggest that the [HHb]bp response is not dependent of O2 driving pressure and that other physiological mechanisms might determine its occurrence.

Funder

National Science and Engineering Research Council of Canada

Heart & Stroke Foundation of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3