Effects of arterial oxygen content on peripheral locomotor muscle fatigue

Author:

Amann Markus,Romer Lee M.,Pegelow David F.,Jacques Anthony J.,Hess C. Joel,Dempsey Jerome A.

Abstract

The effect of arterial O2 content (CaO2) on quadriceps fatigue was assessed in healthy, trained male athletes. On separate days, eight participants completed three constant-workload trials on a bicycle ergometer at fixed workloads (314 ± 13 W). The first trial was performed while the subjects breathed a hypoxic gas mixture [inspired O2 fraction (FiO2) = 0.15, Hb saturation = 81.6%, CaO2 = 18.2 ml O2/dl blood; Hypo] until exhaustion (4.5 ± 0.4 min). The remaining two trials were randomized and time matched with Hypo. The second and third trials were performed while the subjects breathed a normoxic (FiO2 = 0.21, Hb saturation = 95.0%, CaO2 = 21.3 ml O2/dl blood; Norm) and a hyperoxic (FiO2 = 1.0, Hb saturation = 100%, CaO2 = 23.8 ml O2/dl blood; Hyper) gas mixture, respectively. Quadriceps muscle fatigue was assessed via magnetic femoral nerve stimulation (1–100 Hz) before and 2.5 min after exercise. Myoelectrical activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Immediately after exercise, the mean force response across 1–100 Hz decreased from preexercise values ( P < 0.01) by −26 ± 2, −17 ± 2, and −13 ± 2% for Hypo, Norm, and Hyper, respectively; each of the decrements differed significantly ( P < 0.05). Integrated electromyogram increased significantly throughout exercise ( P < 0.01) by 23 ± 3, 10 ± 1, and 6 ± 1% for Hypo, Norm, and Hyper, respectively; each of the increments differed significantly ( P < 0.05). Mean power frequency fell more ( P < 0.05) during Hypo (−15 ± 2%); the difference between Norm (−7 ± 1%) and Hyper (−6 ± 1%) was not significant ( P = 0.32). We conclude that ΔCaO2 during strenuous systemic exercise at equal workloads and durations affects the rate of locomotor muscle fatigue development.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3