Acute hypoalgesic, neurophysiological and perceptual responses to low‐load blood flow restriction exercise and high‐load resistance exercise

Author:

Norbury Ryan1ORCID,Grant Ian1,Woodhead Alex1,Hughes Luke2ORCID,Tallent Jamie34,Patterson Stephen D.1ORCID

Affiliation:

1. Faculty of Sport, Technology and Health Sciences St Mary's University Twickenham UK

2. Department of Sport, Exercise and Rehabilitation Northumbria University Newcastle‐Upon Tyne UK

3. School of Sport, Rehabilitation and Exercise Sciences University of Essex Colchester UK

4. Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science Monash University Melbourne VA Australia

Abstract

AbstractThis study compared the acute hypoalgesic and neurophysiological responses to low‐load resistance exercise with and without blood flow restriction (BFR), and free‐flow, high‐load exercise. Participants performed four experimental conditions where they completed baseline measures of pain pressure threshold (PPT), maximum voluntary force (MVF) with peripheral nerve stimulation to determine central and peripheral fatigue. Corticospinal excitability (CSE), corticospinal inhibition and short interval intracortical inhibition (SICI) were estimated with transcranial magnetic stimulation. Participants then performed low‐load leg press exercise at 30% of one‐repetition maximum (LL); low‐load leg press with BFR at 40% (BFR40) or 80% (BFR80) of limb occlusion pressure; or high‐load leg press of four sets of 10 repetitions at 70% one‐repetition maximum (HL). Measurements were repeated at 5, 45 min and 24 h post‐exercise. There were no differences in CSE or SICI between conditions (all P > 0.05); however, corticospinal inhibition was reduced to a greater extent (11%–14%) in all low‐load conditions compared to HL (< 0.005). PPTs were 12%–16% greater at 5 min post‐exercise in BFR40, BFR80 and HL compared to LL (≤ 0.016). Neuromuscular fatigue displayed no clear difference in the magnitude or time course between conditions (all > 0.05). In summary, low‐load BFR resistance exercise does not induce different acute neurophysiological responses to low‐load, free‐flow exercise but it does promote a greater degree of hypoalgesia and reduces corticospinal inhibition more than high‐load exercise, making it a useful rehabilitation tool. The changes in neurophysiology following exercise were not related to changes in PPT.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3