Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells

Author:

McClung James P.,Hasday Jeffrey D.,He Ju-ren,Montain Scott J.,Cheuvront Samuel N.,Sawka Michael N.,Singh Ishwar S.

Abstract

The induction of cellular acquired thermal tolerance (ATT) during heat acclimation (HA) in humans is not well described. This study determined whether exercise-HA modifies the human heat shock protein (HSP)72 and HSP90 responses and whether changes are correlated with physiological adaptations to HA. Using a 10-day HA protocol comprising daily exercise (treadmill walking) in a hot environment ( Ta = 49°C, 20% RH), we analyzed baseline and ex vivo heat-induced expression of HSP72 and HSP90 in peripheral blood mononuclear cells (PBMCs) isolated prior to exercise from eight subjects on day 1 and 10 of the HA protocol. Classical physiological responses to HA were observed, including significantly reduced heart rate and core body temperature, and significantly increased sweating rate. Baseline levels of HSP72 and HSP90 were significantly increased following acclimation by 17.7 ± 6.1% and 21.1 ± 6.5%, respectively. Ex vivo induction of HSP72 in PBMCs exposed to heat shock (43°C) was blunted on day 10 compared with day 1. A correlation was identified ( r2 = 0.89) between changes in core temperature elevation and ex vivo HSP90 responses to heat shock between days 1 and 10, indicating that volunteers demonstrating the greatest physiological HA tended to exhibit the greatest blunting of ex vivo HSP induction in response to heat shock. In summary, 1) exercise-HA resulted in increased baseline levels of HSP72 and HSP90, 2) ex vivo heat inducibility of HSP72 was blunted after HA, and 3) volunteers demonstrating the greatest physiological HA tended to exhibit the greatest blunting of ex vivo HSP induction in response to heat shock. These data demonstrate that physiological adaptations in humans undergoing HA are accompanied by both increases in baseline levels and changes in regulation of cytoprotective HSPs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference40 articles.

1. Multiple Components of the HSP90 Chaperone Complex Function in Regulation of Heat Shock Factor 1 In Vivo

2. Buckley BA, Owen ME, Hofmann GE. Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol 204: 3571–3579, 2001.

3. Comparison of sweat loss estimates for women during prolonged high-intensity running

4. Consolazio FC, Johnson RE, Pecora LJ. Physiological variability in young men. In: Physiological Measurements of Metabolic Functions in Man, edited by Consolazio FC and Frank C. New York: McGraw-Hill, 1963, p. 463–480.

5. Cotto JJ, Morimoto RI. Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp 64: 105–118, 1999.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3