Multiple Components of the HSP90 Chaperone Complex Function in Regulation of Heat Shock Factor 1 In Vivo

Author:

Bharadwaj Steven1,Ali Adnan1,Ovsenek Nick1

Affiliation:

1. Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5

Abstract

ABSTRACT Rapid and transient activation of heat shock genes in response to stress is mediated in eukaryotes by the heat shock transcription factor HSF1. It is well established that cells maintain a dynamic equilibrium between inactive HSF1 monomers and transcriptionally active trimers, but little is known about the mechanism linking HSF1 to reception of various stress stimuli or the factors controlling oligomerization. Recent reports have revealed that HSP90 regulates key steps in the HSF1 activation-deactivation process. Here, we tested the hypothesis that components of the HSP90 chaperone machine, known to function in the folding and maturation of steroid receptors, might also participate in HSF1 regulation. Mobility supershift assays using antibodies against chaperone components demonstrate that active HSF1 trimers exist in a heterocomplex with HSP90, p23, and FKBP52. Functional in vivo experiments in Xenopus oocytes indicate that components of the HSF1 heterocomplex, as well as other components of the HSP90 cochaperone machine, are involved in regulating oligomeric transitions. Elevation of the cellular levels of cochaperones affected the time of HSF1 deactivation during recovery: attenuation was delayed by immunophilins, and accelerated by HSP90, Hsp/c70, Hip, or Hop. In immunotargeting experiments with microinjected antibodies, disruption of HSP90, Hip, Hop, p23, FKBP51, and FKBP52 delayed attenuation. In addition, HSF1 was activated under nonstress conditions after immunotargeting of HSP90 and p23, evidence that these proteins remain associated with HSF1 monomers and function in their repression in vivo. The remarkable similarity of HSF1 complex chaperones identified here (HSP90, p23, and FKBP52) and components in mature steroid receptor complexes suggests that HSF1 oligomerization is regulated by a foldosome-type mechanism similar to steroid receptor pathways. The current evidence leads us to propose a model in which HSF1, HSP90 and p23 comprise a core heterocomplex required for rapid conformational switching through interaction with a dynamic series of HSP90 subcomplexes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3