Upregulation of fatty acid amide hydrolase in the dorsal periaqueductal gray is associated with neuropathic pain and reduced heart rate in rats

Author:

Dean Caron12,Hillard Cecilia J.3,Seagard Jeanne L.12,Hopp Francis A.2,Hogan Quinn H.12

Affiliation:

1. Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin;

2. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin

3. Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin; and

Abstract

Nerve damage can induce a heightened pain response to noxious stimulation, which is termed hyperalgesia. Pain itself acts as a stressor, initiating autonomic and sensory effects through the dorsal periaqueductal gray (dPAG) to induce both sympathoexcitation and analgesia, which prior studies have shown to be affected by endocannabinoid signaling. The present study addressed the hypothesis that neuropathic pain disrupts autonomic and analgesic regulation by endocannabinoid signaling in the dPAG. Endocannabinoid contents, transcript levels of endocannabinoid signaling components, and catabolic enzyme activity were analyzed in the dPAG of rats at 21 days after painful nerve injury. The responses to two nerve injury models were similar, with two-thirds of animals developing hyperalgesia that was maintained throughout the postinjury period, whereas no sustained change in sensory function was observed in the remaining rats. Anandamide content was lower in the dPAG of rats that developed sustained hyperalgesia, and activity of the catabolic enzyme fatty acid amide hydrolase (FAAH) was higher. Intensity of hyperalgesia was correlated to transcript levels of FAAH and negatively correlated to heart rate and sympathovagal balance. These data suggest that maladaptive endocannabinoid signaling in the dPAG after nerve injury could contribute to chronic neuropathic pain and associated autonomic dysregulation. This study demonstrates that reduced anandamide content and upregulation of FAAH in the dPAG are associated with hyperalgesia and reduced heart rate sustained weeks after nerve injury. These data provide support for the evaluation of FAAH inhibitors for the treatment of chronic neuropathic pain.

Funder

Veterans Affairs BLR&D

Advancing a Healthier Wisconsin, Medical College of Wisconsin

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3