Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume

Author:

Braam Branko1

Affiliation:

1. Department of Nephrology and Hypertension, University Hospital Utrecht, 3508 GA Utrecht, The Netherlands

Abstract

If, only 20 years ago, anyone had postulated that the absence of nitric oxide gas (NO) would lead to severe hypertension and destruction of the vascular bed of the kidney within weeks, it is not unlikely that smiles of pity would have appeared on the faces of fellow researchers. By now, this has become common knowledge, and hundreds of reports have appeared on the regulation of vascular and renal function by nitric oxide. The amount of information complicates the design of a concept on how NO participates in control of extracellular fluid volume (ECFV) by the kidney. This review analyzes the function of endothelial and macula densa NO synthase (NOS) in the regulation of renal function. From this analysis, endothelial NOS (eNOS)-derived NO is considered a modulator of vascular responses and of renal autoregulation in particular. Increases in renal perfusion pressure and sodium loading will increase eNOS activity, resulting in vasodilatation and depression of tubuloglomerular feedback system responsiveness. Endothelium-derived NO seems important to buffer minute-to-minute variations in perfusion pressure and rapid changes in ANG II activity. In contrast, macula densa NOS is proposed to drive adaptations to long-term changes in distal delivery and is considered a mediator of renin formation. Increases in perfusion pressure and distal delivery will depress the activity and expression of the enzyme that coincides with, and possibly mediates, diminished renin activity. Together, the opposite responses of eNOS and macula densa NOS-derived NO to changes in ECFV lead to an appropriate response to restore sodium balance. The concept that the two enzymes with different localizations in the kidney and in the cell are producing the same product, displaying contrasting responses to the same stimulus but nevertheless exhibiting an integrated response to perturbation of the most important regulated variable by the kidney, i.e., the ECFV, may be applicable to other tissues.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardio-Renal Syndrome;J POPUL THER CLIN PH;2023

2. Cardio-Renal Syndrome;Journal of Population Therapeutics and Clinical Pharmacology;2023-01-01

3. Changes in Proximal Tubular Reabsorption Modulate Microvascular Regulation via the TGF System;International Journal of Molecular Sciences;2022-09-23

4. Range of adiposity and cardiorenal syndrome;World Journal of Diabetes;2020-08-15

5. Pathophysiology of Cardio-Renal Syndrome: Autonomic Mechanisms;Cardiorenal Syndrome in Heart Failure;2019-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3