Changes in Proximal Tubular Reabsorption Modulate Microvascular Regulation via the TGF System

Author:

Poursharif Shayan,Hamza Shereen,Braam Branko

Abstract

This review paper considers the consequences of modulating tubular reabsorption proximal to the macula densa by sodium–glucose co-transporter 2 (SGLT2) inhibitors, acetazolamide, and furosemide in states of glomerular hyperfiltration. SGLT2 inhibitors improve renal function in early and advanced diabetic nephropathy by decreasing the glomerular filtration rate (GFR), presumably by activating the tubuloglomerular feedback (TGF) mechanism. Central in this paper is that the renoprotective effects of SGLT2 inhibitors in diabetic nephropathy can only be partially explained by TGF activation, and there are alternative explanations. The sustained activation of TGF leans on two prerequisites: no or only partial adaptation should occur in reabsorption proximal to macula densa, and no or only partial adaptation should occur in the TGF response. The main proximal tubular and loop of Henle sodium transporters are sodium–hydrogen exchanger 3 (NHE3), SGLT2, and the Na-K-2Cl co-transporter (NKCC2). SGLT2 inhibitors, acetazolamide, and furosemide are the most important compounds; inhibiting these transporters would decrease sodium reabsorption upstream of the macula densa and increase TGF activity. This could directly or indirectly affect TGF responsiveness, which could oppose sustained TGF activation. Only SGLT2 inhibitors can sustainably activate the TGF as there is only partial compensation in tubular reabsorption and TGF response. SGLT2 inhibitors have been shown to preserve GFR in both early and advanced diabetic nephropathy. Other than for early diabetic nephropathy, a solid physiological basis for these effects in advanced nephropathy is lacking. In addition, TGF has hardly been studied in humans, and therefore this role of TGF remains elusive. This review also considers alternative explanations for the renoprotective effects of SGLT2 inhibitors in diabetic patients such as the enhancement of microvascular network function. Furthermore, combination use of SGLT2 inhibitors and angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs). in diabetes can decrease inflammatory pathways, improve renal oxygenation, and delay the progression of diabetic nephropathy.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3