Interactive modulation of renal myogenic autoregulation by nitric oxide and endothelin acting through ET-B receptors

Author:

Shi Ying,Lau Catherine,Cupples William A.

Abstract

In rats, nitric oxide modulates renal autoregulation in steady-state experiments and the myogenic mechanism in dynamic studies. Interactive modulation of autoregulation by nitric oxide and endothelin-1, predominantly involving endothelin B receptors, has been reported although it remains unclear whether the interaction is synergistic or obligatory or whether it affects the myogenic component of autoregulation. Nonselective inhibition of nitric oxide synthase (Lω-nitro-l-arginine methyl-ester; l-NAME) with endothelin A and B selective receptor antagonists BQ-123 and BQ-788, all infused into the renal artery, plus time series analysis were used to test the interactive actions of nitric oxide and endothelin on renal vascular conductance and on autoregulation. Nonselective endothelin receptor antagonism blunted the constrictor response to subsequent l-NAME but had no effect on previously established l-NAME-induced vasoconstriction. BQ-123 did not affect conductance and caused only minor reduction in myogenic autoregulatory efficiency. Responses to BQ-123 and l-NAME were additive and not interactive. BQ-788 and l-NAME each caused strong vasoconstriction alone and in the presence of the other, indicating that coupling between nitric oxide- and endothelin B-mediated events is not obligatory. l-NAME augmented myogenic autoregulation, and subsequent BQ-788 did not alter this response. However, BQ-788 infused alone also enhanced myogenic autoregulation but resulted in significant impairment of myogenic autoregulation by subsequent l-NAME. Thus the interaction between nitric oxide and endothelin is clearly nonadditive and, because it is asymmetrical, cannot be explained simply by convergence on a common signal pathway. Instead one must postulate some degree of hierarchical organization and that nitric oxide acts downstream to endothelin B activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3