Affiliation:
1. Hypertension and Vascular Research Division, Henry Ford Hospital,Detroit, Michigan 48202.
Abstract
Inhibition of the production of the endothelium-derived relaxing factor (EDRF) nitric oxide using N omega-nitro-L-arginine methyl ester (L-NAME) increases blood pressure (BP) and decreases renal blood flow (RBF), suggesting that basal EDRF can modulate both systemic resistance and renal perfusion. We tested whether L-NAME inhibition of EDRF could also change the autoregulation of RBF. Blood pressure and RBF were measured in Inactin-anesthetized Sprague-Dawley rats. A bolus of 10 mg/kg body wt of L-NAME produced the maximum pressor response (23 +/- 3 mmHg) and blocked acetylcholine-induced renal vasodilation. In control rats, sequential changes in renal perfusion pressure showed that RBF was well autoregulated down to 95 +/- 2 mmHg. L-NAME increased BP, decreased RBF by 33% (P less than 0.005), and increased renal vascular resistance twofold. Although RBF was decreased, the kidney was still able to autoregulate RBF, although reset around the lower flow. Acute hypertension by carotid occlusion and vagotomy increased BP by 26 +/- 6 mmHg (P less than 0.005) and slightly increased RBF, while autoregulation was maintained. The pressor response to L-NAME was amplified to 38 +/- 6 mmHg (P less than 0.001), but RBF decreased by 35% (P less than 0.01). Autoregulation of RBF was maintained, although reset around the lower flow. We conclude that, although endothelial EDRF production may help maintain RBF, it does not seem to mediate the intrinsic autoregulatory responses of the renal vasculature to altered renal perfusion pressure.
Publisher
American Physiological Society
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献