High-fat diets induce a rapid loss of the insulin anorectic response in the amygdala

Author:

Boghossian Stéphane1,Lemmon Karalee1,Park MieJung1,York David A.1

Affiliation:

1. Center for Advanced Nutrition, Utah State University, Logan, Utah

Abstract

Intracerebroventricular insulin decreases food intake (FI) . The central bed nucleus of the amygdala (CeA), as other regions of the brain regulating feeding behavior, expresses insulin receptors. Our objectives were to show an insulin anorectic response in the amygdala, study the effect of high-fat diets on this response, and map the neural network activated by CeA insulin using c-Fos immunohistochemistry. Sprague-Dawley (SD) rats fitted with unilateral CeA cannulas were adapted to a low-fat (LFD) diet before they were fed a high-fat diet (HFD). Their feeding response to CeA saline or insulin (8 mU) was tested after 24 h, 72 h, or 7 days of being on a HFD. In a second experiment, SD rats were fed the HFD for 3, 7, or 49 days and were then refed with the LFD. They were tested for their insulin response before and after an HFD and every 3 days for the following weeks. Insulin tolerance tests were performed in a parallel group of rats. The CeA insulin stimulation c-Fos expression was studied to identify the distribution of activated neuronal populations. Feeding an HFD for 72 h or more induced a CeA, but not peripheral, insulin resistance, which was slowly reversed by LFD refeeding. The duration of HFD feeding determined the time frame for reversal of the insulin resistance. CeA insulin increased c-Fos in multiple brain regions, including the arcuate nucleus/paraventricular nucleus region of the hypothalamus. We conclude that the amygdala may be an important site for insulin regulation of food intake and may have a significant role in determining susceptibility to HFD-induced obesity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3