Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance

Author:

Macdonald W. A.,Nielsen O. B.,Clausen T.

Abstract

Intense exercise causes a large loss of K+ from contracting muscles. The ensuing elevation of extracellular K+ ([K+]o) has been suggested to cause fatigue by depressing muscle fiber excitability. In isolated muscles, however, repeated contractions confer some protection against this effect of elevated K+. We hypothesize that this excitation-induced force-recovery is related to the release of the neuropeptide calcitonin gene-related peptide (CGRP), which stimulates the muscular Na+-K+ pumps. Using the specific CGRP antagonist CGRP-(8-37), we evaluated the role of CGRP in the excitation-induced force recovery and examined possible mechanisms. Intact rat soleus muscles were stimulated to evoke short tetani at regular intervals. Increasing extracellular K+ ([K+]o) from 4 to 11 mM decreased force to ∼20% of initial force ( P < 0.001). Addition of exogenous CGRP (10−9 M), release of endogenous CGRP with capsaicin, or repeated electrical stimulation recovered force to 50–70% of initial force ( P < 0.001). In all cases, force recovery could be almost completely suppressed by CGRP-(8-37). At 11 mM [K+]o, CGRP (10−8 M) did not alter resting membrane potential or conductance but significantly improved action potentials ( P < 0.001) and increased the proportion of excitable fibers from 32 to 70% ( P < 0.001). CGRP was shown to induce substantial force recovery with only modest Na+-K+ pump stimulation. We conclude that the excitation-induced force recovery is caused by a recovery of excitability, induced by local release of CGRP. The data suggest that the recovery of excitability partly was induced by Na+-K+ pump stimulation and partly by altering Na+ channel function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3