Affiliation:
1. Department of Public Health, Aarhus University, Aarhus, Denmark
2. Department of Biomedicine, Aarhus University, Aarhus, Denmark
Abstract
During dynamic contractions, high-frequency muscle activation is needed to achieve optimal power. This must be balanced against an increased excitation-induced accumulation of extracellular K+, which can reduce excitability and ultimately may prevent adequate responses to high-frequency activation. Mean activation frequencies in vivo are often low (subtetanic), but activation patterns contain bursts of high (supratetanic) frequencies known as doublets, which enhance dynamic contraction in rested muscles at normal extracellular K+ concentration ([K+]o). Here, we examine how dynamic contractions in fast-twitch fibers stimulated by high frequency/doublets are affected during exposure to 11 mM [K+]o and during fatigue. Dynamic contractions were elicited by electrical stimulation in isolated rat extensor digitorum longus muscles incubated at 4 or 11 mM K+. When stimulation frequency was maintained constant, an increase from 150 to 300 Hz enhanced maximal power (Pmax), maximal velocity ( Vmax), and rate of force development (RFD) at 4 mM K+ but only Vmax at 11 mM K+. With the use of subtetanic frequency trains (50 Hz) with or without an initiating doublet (300 Hz), the addition of a doublet increased maximal force, Pmax, Vmax, and RFD at both 4 and 11 mM K+. Furthermore, a work-matched fatiguing protocol was performed comparing a doublet-initiated subtetanic train (DT) of 60 Hz with a constant-frequency train (CFT) of 71 Hz during 100 dynamic contractions. We found that DT produced higher power, velocity, and RFD than CFT throughout the fatiguing protocol. The results indicate that doublets enhance dynamic contraction in fast-twitch muscles stimulated at subtetanic frequency during both normal and fatiguing conditions.
Funder
Det Frie Forskningsråd (Danish Council for Independent Research)
Publisher
American Physiological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献