Fish oil prevents high-saturated fat diet-induced impairments in adiponectin and insulin response in rodent soleus muscle

Author:

Tishinsky Justine M.1,Gulli Roberto A.1,Mullen Kerry L.1,Dyck David J.1,Robinson Lindsay E.1

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada

Abstract

High saturated fatty acid (SFA) diets contribute to the development of insulin resistance, whereas fish oil-derived n-3 polyunsaturated fatty acids (PUFA) increase the secretion of adiponectin (Ad), an adipocyte-derived protein that stimulates fatty acid oxidation (FAO) and improves skeletal muscle insulin response. We sought to determine whether fish oil could prevent and/or restore high SFA diet-induced impairments in Ad and insulin response in soleus muscle. Sprague-Dawley rats were fed 1) a low-fat control diet (CON group), 2) high-SFA diet (SFA group), or 3) high SFA with n-3 PUFA diet (SFA/n-3 PUFA group). At 4 wk, CON and SFA/n-3 PUFA animals were terminated, and SFA animals were either terminated or fed SFA or SFA/n-3 PUFA for an additional 2 or 4 wk. The effect of diet on Ad-stimulated FAO, insulin-stimulated glucose transport, and expression of Ad, insulin and inflammatory signaling proteins was determined in the soleus muscle. Ad stimulated FAO in CON and 4 wk SFA/n-3 PUFA (+36%, +39%, respectively P ≤ 0.05) only. Insulin increased glucose transport in CON, 4 wk SFA/n-3 PUFA, and 4 wk SFA + 4 wk SFA/n-3 PUFA (+82%, +33%, +25%, respectively P ≤ 0.05); this effect was lost in all other groups. TLR4 expression was increased with 4 wk of SFA feeding (+24%, P ≤ 0.05), and this was prevented in 4 wk SFA/n-3 PUFA. Suppressor of cytokine signaling-3 expression was increased in SFA and SFA/n-3 PUFA (+33 and +18%, respectively, P ≤ 0.05). Our results demonstrate that fish oil can prevent high SFA diet-induced impairments in both Ad and insulin response in soleus muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3