Angiotensin II does not contribute to rapid reflex control of arterial pressure

Author:

Brown D. R.1,Yingling J. D.1,Randall D. C.1,Aral H. M.1,Evans J. M.1,Charles J. B.1,Knapp C. F.1,Raisch R.1,Ott C. E.1

Affiliation:

1. Center for Biomedical Engineering, University of Kentucky, Lexington40506-00701.

Abstract

Pharmacological blockade of the renin-angiotensin converting enzyme reportedly alters the heart rate (HR) power spectrum in conscious dogs, suggesting that these hormones contribute to the short-term regulation of arterial blood pressure. We tested this possibility using four independent procedures. First, HR power spectrum was determined in seven awake dogs before and after administration of enalaprilat (300 ng/kg), a converting-enzyme inhibitor. There were no significant changes in the average amplitude for the spectral peak between 0.003 and 0.1 Hz (i.e., the "low-frequency peak"). Second, the HR power spectrum was measured in 11 awake rabbits before and after treatment with deoxycorticosterone acetate (1 mg.kg-1.day-1) and salt (0.9% saline ad libitum) for 7 days to depress plasma renin levels. There were no significant changes in the amplitude of the HR power spectrum, although mean HR decreased from 206 +/- 3 to 184 +/- 4 beats/min after treatment. In the third experiment, another group of rabbits (n = 8) was tested after 2 wk on a low-salt diet to elevate plasma angiotensin levels and then after 2 wk on a normal salt diet. Once again there were no significant effects on the HR power spectrum. Finally, tranquilized dogs (n = 9) were subjected to sinusoidally varying lower body negative pressure at selected frequencies of 0.008-0.12 Hz. Tests were conducted in the control state and after administration of an angiotensin receptor antagonist (saralasin, 1 microgram.kg-1.min-1). Lower body negative pressure-induced fluctuations in arterial blood pressure were similar in both states. We find no evidence for the role of the renin-angiotensin system in the moment-to-moment regulation of arterial pressure and HR.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3