Reducing lung liquid volume increases biventricular outputs and systemic arterial blood flows despite decreased cardiac filling pressures in fetal lambs

Author:

Smolich Joseph J.12,Mynard Jonathan P.1234ORCID

Affiliation:

1. Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia

2. Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia

3. Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia

4. Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia

Abstract

As prior work has shown that reducing lung liquid volume 1) increases pulmonary arterial (PA) blood flow, 2) augments right ventricular (RV) output/power, and 3) decreases left atrial (LA) pressure, we tested the hypothesis that this perturbation has global cardiovascular effects. Ten anesthetized, open-chest fetal lambs (128 ± 2 days gestation, full term = 147 days) were acutely instrumented with 1) LA and right atrial (RA) catheters, 2) aortic and pulmonary trunk catheters, 3) brachiocephalic trunk, aortic isthmus, ductal, and left PA flow probes to obtain left ventricular (LV) and RV outputs and hydraulic power and flow in the descending thoracic aorta, and 4) an endotracheal tube to remove lung liquid. A 17 ± 7 ml/kg reduction of lung liquid volume 1) decreased LA and RA pressures similarly (1.5–1.6 mmHg, P < 0.001), 2) augmented LV and RV outputs (21–24%, P < 0.001) and total power (27–28%, P < 0.005), 3) increased systolic flows in the brachiocephalic trunk (18%, P < 0.001), aortic isthmus (29%, P < 0.005), ductus (12%, P < 0.005), and descending thoracic aorta (16%, P < 0.001), 4) increased mean PA flow via a higher systolic inflow (37%, P < 0.001) and lower diastolic backflow (−16%, P < 0.05), and 5) did not change systemic vascular conductance or arterial compliance but increased both pulmonary vascular conductance and arterial compliance (1.8-fold, P < 0.001). These data suggest that hemodynamic effects of lung liquid volume reduction are not confined to the lungs but extend to all cardiac chambers via rises in LV and RV outputs and power, despite falls in cardiac filling pressures, as well as the systemic circulation, via downstream increases in systolic flows of major central arteries.

Funder

National Heart Foundation of Australia

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Victorian Government Operational Infrastructure Support Program

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3