Affiliation:
1. Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
2. Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
3. Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
4. Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia
Abstract
As prior work has shown that reducing lung liquid volume 1) increases pulmonary arterial (PA) blood flow, 2) augments right ventricular (RV) output/power, and 3) decreases left atrial (LA) pressure, we tested the hypothesis that this perturbation has global cardiovascular effects. Ten anesthetized, open-chest fetal lambs (128 ± 2 days gestation, full term = 147 days) were acutely instrumented with 1) LA and right atrial (RA) catheters, 2) aortic and pulmonary trunk catheters, 3) brachiocephalic trunk, aortic isthmus, ductal, and left PA flow probes to obtain left ventricular (LV) and RV outputs and hydraulic power and flow in the descending thoracic aorta, and 4) an endotracheal tube to remove lung liquid. A 17 ± 7 ml/kg reduction of lung liquid volume 1) decreased LA and RA pressures similarly (1.5–1.6 mmHg, P < 0.001), 2) augmented LV and RV outputs (21–24%, P < 0.001) and total power (27–28%, P < 0.005), 3) increased systolic flows in the brachiocephalic trunk (18%, P < 0.001), aortic isthmus (29%, P < 0.005), ductus (12%, P < 0.005), and descending thoracic aorta (16%, P < 0.001), 4) increased mean PA flow via a higher systolic inflow (37%, P < 0.001) and lower diastolic backflow (−16%, P < 0.05), and 5) did not change systemic vascular conductance or arterial compliance but increased both pulmonary vascular conductance and arterial compliance (1.8-fold, P < 0.001). These data suggest that hemodynamic effects of lung liquid volume reduction are not confined to the lungs but extend to all cardiac chambers via rises in LV and RV outputs and power, despite falls in cardiac filling pressures, as well as the systemic circulation, via downstream increases in systolic flows of major central arteries.
Funder
National Heart Foundation of Australia
Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)
Victorian Government Operational Infrastructure Support Program
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献