Effect of chronic cold exposure on Na-dependent D-glucose transport along small intestine in ducklings

Author:

Thomas V.1,Pichon B.1,Crouzoulon G.1,Barre H.1

Affiliation:

1. Laboratoire de Physiologie des Regulations Energetiques Cellulaires etMoleculaires, Universite Claude Bernard, Villeurbanne, France.

Abstract

In conditions of chronic cold exposure, ducklings develop a nonshivering thermogenesis that requires a high energy expenditure. Therefore, energy supply becomes essential to cold-acclimated ducklings, which increase their intake of carbohydrate-rich food. The aim of this work was to investigate the effect of cold acclimation on the activity of the intestinal brush-border Na(+)-D-glucose cotransport, which is the first major step controlling glucose entrance into an organism. Cotransport activity was determined by measuring D-glucose uptake in brush-border membrane vesicles isolated from different parts of the small intestine of thermoneutral control (25 degrees C) or cold-acclimated (4 degrees C) ducklings (Cairina moschata). Two D-glucose transport sites were described in ducklings: a high-affinity/low-capacity site and a low-affinity/high-capacity site. The former was mainly located in the ileum and the latter in the duodenum. These two transport sites were altered differently by cold exposure. Major alterations occur in the ileum where 1) a reduction in the Michaelis-Menten constant and maximal transport rate of the high-affinity site was observed, and 2) the occurrence of low-affinity site activity was noted in cold-acclimated ducklings, although it was not detected in the thermoneutral control group. Cold effect on the high-affinity site could be related to the changes in the ileal brush-border membrane vesicle lipids, whereas cold effect on the low-affinity site could be due, at least in part, to the higher glycosyl content found in this segment. The small intestine appears then able to react to cold exposure by increasing both its mucosa mass in proximal segments and D-glucose uptake capacity in ileum to respond to the higher energy demand induced by thermoregulatory requirements.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3