Affiliation:
1. Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France
Abstract
Heterogeneity of intestinald-glucose transport is demonstrated using pig jejunal brush-border membrane vesicles in the presence of 100/0 (out/in) mM gradients each of NaCl, NaSCN, and KSCN. Two d-glucose transport systems are kinetically distinguished: high-affinity, low-capacity system 1, which is equivalent to the symporter SGLT1; and low-affinity, high-capacity system 2, which is not a member of the SGLT family but is a d-glucose and d-mannose transporter exhibiting no preference for Na+over K+. A nonsaturabled-glucose uptake component has also been detected; uptake of this component takes place at rates 10 times the rate of components characterizing the classical diffusion marker l-glucose. It is also shown that, in this kinetic work, 1) use of d-glucose-contaminatedd-sorbitol as an osmotic replacement cannot cause the spurious appearance of nonexistent transport systems and 2) a large range (≥50 mM) of substrate concentrations is required to correctly fit substrate saturation curves to distinguish between low-affinity transport systems and physical diffusion.
Publisher
American Physiological Society
Cited by
176 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献