Activation of catecholamine neurons in the ventral medulla reduces CCK-induced hypophagia and c-Fos activation in dorsal medullary catecholamine neurons

Author:

Li Ai-Jun1ORCID,Wang Qing1,Ritter Sue1

Affiliation:

1. Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington

Abstract

Catecholamine (CA) neurons within the A1 and C1 cell groups in the ventrolateral medulla (VLM) potently increase food intake when activated by glucose deficit. In contrast, CA neurons in the A2 cell group of the dorsomedial medulla are required for reduction of food intake by cholecystokinin (CCK), a peptide that promotes satiation. Thus dorsal and ventral medullary CA neurons are activated by divergent metabolic conditions and mediate opposing behavioral responses. Acute glucose deficit is a life-threatening condition, and increased feeding is a key response that facilitates survival of this emergency. Thus, during glucose deficit, responses to satiation signals, like CCK, must be suppressed to ensure glucorestoration. Here we test the hypothesis that activation of VLM CA neurons inhibits dorsomedial CA neurons that participate in satiation. We found that glucose deficit produced by the antiglycolytic glucose analog, 2-deoxy-d-glucose, attenuated reduction of food intake by CCK. Moreover, glucose deficit increased c-Fos expression by A1 and C1 neurons while reducing CCK-induced c-Fos expression in A2 neurons. We also selectively activated A1/C1 neurons in TH-Cre+ transgenic rats in which A1/C1 neurons were transfected with a Cre-dependent designer receptor exclusively activated by a designer drug (DREADD). Selective activation of A1/C1 neurons using the DREADD agonist, clozapine- N-oxide, attenuated reduction of food intake by CCK and prevented CCK-induced c-Fos expression in A2 CA neurons, even under normoglycemic conditions. Results support the hypothesis that activation of ventral CA neurons attenuates satiety by inhibiting dorsal medullary A2 CA neurons. This mechanism may ensure that satiation does not terminate feeding before restoration of normoglycemia.

Funder

NIH

ADA

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3