Author:
Andrew Shayne F.,Dinh Thu T.,Ritter Sue
Abstract
Glucose is required for brain energy metabolism. Decerebration, aqueduct occlusion, and cannula mapping studies have established that glucose-sensing cells capable of eliciting feeding and adrenal medullary responses to glucoprivation are localized in the hindbrain. Glucoprivation also evokes corticosterone and glucagon secretion, but the location of receptors mediating these responses is unknown. To determine whether glucoreceptive sites controlling these responses are present in the hindbrain, we administered the antiglycolytic agent, 5-d-thioglucose (5TG, 24 μg in 200 nl) into brain stem sites through implanted cannulas and examined plasma concentrations of corticosterone and glucagon. Both hindbrain and hypothalamic sites were tested. Blood was collected remotely from intra-atrial catheters at 0, 30, 60, 90, 120, 180, and 240 min after 5TG or control injection. Caudal hindbrain 5TG injections potently increased circulating corticosterone and glucagon concentrations. For corticosterone, the mean peak response (maximum concentration minus time 0 concentration) elicited at positive sites (23 of 40 sites) was 391 ng/ml (SE = 16). For glucagon, the mean peak response at positive sites (27 of 40 sites) was 46 pg/ml (SE = 6). Glucoprivically evoked glucagon secretion was abolished by the ganglionic blocker, hexamethonium, but not by adrenal denervation. Six of twenty-five hypothalamic sites were positive for corticosterone secretion, yielding plasma levels of 279 ± 23 ng/ml, but none of the hypothalamic injection sites elevated glucagon concentrations. Results demonstrate that receptor cells responsive to glucose deficit and capable of increasing corticosterone and glucagon concentrations exist within the hindbrain, thus further delineating central glucoregulatory neural circuitry.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献