Transient impairment of dynamic renal autoregulation in early diabetes mellitus in rats

Author:

Mitrou Nicholas1,Morrison Sidney1,Mousavi Paymon1,Braam Branko23,Cupples William A.1

Affiliation:

1. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada;

2. Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada; and

3. Department of Physiology, University of Alberta, Edmonton, Alberta, Canada

Abstract

Renal autoregulation is impaired in early (1 wk) diabetes mellitus (DM) induced by streptozotocin, but effective in established DM (4 wk). Furthermore nitric oxide synthesis (NOS) inhibition with NG-nitro-l-arginine methyl ester (l-NAME) significantly improved autoregulation in early DM but not in established DM. We hypothesized that autoregulation is transiently impaired in early DM because of increased NO availability in the kidney. Because of the conflicting evidence available for a role of NO in DM, we tested the hypothesis that DM reduces autoregulation effectiveness by reducing the spatial similarity of autoregulation. Male Long-Evans rats were divided into control (CON) and diabetic (DM; streptozotocin) groups and followed for either 1 wk (CON1, n = 6; DM1, n = 5) or 4 wk (CON4, n = 7; DM4, n = 7). At the end of the experiment, dynamic autoregulation was assessed in isoflurane-anesthetized rats by whole kidney RBF during baseline, NOS1 inhibition, and nonselective NOS inhibition. Kidney surface perfusion, monitored with laser speckle contrast imaging, was used to assess spatial heterogeneity of autoregulation. Autoregulation was significantly impaired in DM1 rats and not impaired in DM4 rats. l-NAME caused strong renal vasoconstriction in all rats, but did not significantly affect autoregulation dynamics. Autoregulation was more spatially heterogeneous in DM1, but not DM4. Therefore, our results, which are consistent with transient impairment of autoregulation in DM, argue against the hypothesis that this impairment is NO-dependent, and suggest that spatial properties of autoregulation may also contribute to reduced autoregulatory effectiveness in DM1.

Funder

Canadian Institutes for Health Research

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3