Retention of lung distension information in pump cell spike trains

Author:

Marchenko Vitaliy,Rogers Robert F.

Abstract

Respiratory control requires feedback signals from the viscera, including mechanoreceptors and chemoreceptors. We previously showed that typical pulmonary stretch receptor (PSR) spike trains provide the central nervous system with ∼31% of the theoretical maximum information regarding the amplitude of lung distension. However, it is unknown whether the spatiotemporal convergence of many PSR inputs onto second-order neurons (e.g., pump cells) results in more, or less, information about the stimulus carried by second-order cell spike trains. We recorded pump cell activity in adult, anesthetized, paralyzed, artificially ventilated rabbits during continuous manipulation of ventilator rate and volume to test the hypothesis that less information is carried by spike trains of individual pump cells than PSRs. Using previously developed analytic methods, we quantified the information carried by the pump cell spike trains and compared it with the same values derived from PSR data. Our results provide evidence that rejects our hypothesis: pump cells as a group did not carry significantly less information about the lung distension stimulus than PSRs, although that trend was implied by the data. By comparing the response variances with the theoretical minimum, we discovered that the trend toward information loss depends on response strength, with higher mean responses associated with larger response variances in pump cells than in PSRs. Thus spatiotemporal integration may result in information loss within certain analytic/stimulus parameters, but this is counterbalanced by the consistency of pump cell responses during brief integration times and/or low stimulus amplitudes, resulting in retention of total information.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3