A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction

Author:

Elias Carol F.1

Affiliation:

1. Department of Molecular and Integrative Physiology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan

Abstract

The remarkable development and refinement of the Cre-loxP system coupled with the nonstop production of new mouse models and virus vectors have impelled the growth of various fields of investigation. In this article, I will discuss the data collected using these genetic tools in our area of interest, giving specific emphasis to the identification of the neuronal populations that relay leptin action in reproductive physiology. A series of mouse models that allow manipulation of the leptin receptor gene have been generated. Of those, I will discuss the use of two models of leptin receptor gene reexpression ( LepR neo/neo and LepR loxTB/loxTB) and one model of leptin signaling blockade ( LepR flox/flox). I will also highlight the differences of using stereotaxic delivery of virus vectors expressing DNA-recombinases (Flp and Cre) and mouse models expressing Cre-recombinase. Our findings indicate that leptin action in the ventral premammillary nucleus is sufficient, but not required, for leptin action in reproduction and that leptin action in Kiss1 neurons arises after pubertal maturation; therefore, direct leptin signaling in Kiss1 neurons is neither required nor sufficient for the permissive action of leptin in pubertal development. It also became evident that the full action of leptin in the reproductive neuroendocrine axis requires the engagement of an integrated circuitry, yet to be fully unveiled.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photoperiodic regulation in a wild-derived mouse strain;Journal of Experimental Biology;2020-01-01

2. Role of Histone Modifications in Chronic Pain Development;Epigenetics of Chronic Pain;2019

3. Metabolic Regulation of GnRH Neurons;The GnRH Neuron and its Control;2018-03-02

4. Further Reading;Principles of Hormone/Behavior Relations;2018

5. Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model;Brain Structure and Function;2017-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3