Electroencephalogram activity in the anoxic turtle brain

Author:

Fernandes J. A.1,Lutz P. L.1,Tannenbaum A.1,Todorov A. T.1,Liebovitch L.1,Vertes R.1

Affiliation:

1. Department of Biological Science, Florida Atlantic University, BocaRaton 33431, USA.

Abstract

The anoxia-tolerant turtle brain slowly undergoes a complex sequence of changes in electroencephalogram (EEG) activity as the brain systematically downregulates its energy demands. Following N2 respiration, the root mean square voltage rapidly fell, reaching approximately 20% of normoxic levels after approximately 100 min of anoxia. During the first 20- to 40-min transition period, the power of the EEG decreased substantially, particularly in the 12- to 24-Hz band, with low-amplitude slow wave activity predominating (3-12 Hz). Bursts of high voltage rhythmic slow (approximately 3-8 Hz) waves were seen during the 20- to 100-min period of anoxia, accompanied by large sharp waves. During the next 400 min of N2 respiration, two distinct patterns of electrical activity characterized the anoxic turtle brain: 1) a sustained but depressed activity level, with an EEG amplitude approximately 20% of the normoxic control and with total EEG power reduced by one order of magnitude at all frequencies, and 2) short (3-15 s) periodic (0.5-2/min) bursts of mixed-frequency activity that interrupted the depressed activity state. We speculate that the EEG patterns seen during sustained anoxia represent the minimal or basic electrical activities that are compatible with the survival of the anoxic turtle brain as an integrated unit, which allow the brain to return to normal functioning when air respiration resumed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protective down-regulated states in the human brain: A possible lesson from COVID-19;Proceedings of the National Academy of Sciences;2022-11-07

2. Goldfish and crucian carp are natural models of anoxia tolerance in the retina;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2022-08

3. Differential Responses of Methionine Sulfoxide Reductases A and B to Anoxia and Oxidative Stress in the Freshwater Turtle Trachemys scripta;Metabolites;2021-07-16

4. Isolated adult turtle brainstems exhibit central hypoxic chemosensitivity;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2018-11

5. Re-oxygenation after anoxia induces brain cell death and memory loss in the anoxia-tolerant crucian carp;Journal of Experimental Biology;2017-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3