Differential Responses of Methionine Sulfoxide Reductases A and B to Anoxia and Oxidative Stress in the Freshwater Turtle Trachemys scripta

Author:

Reiterer Melissa,Bruce Lynsey,Milton Sarah

Abstract

Oxidative stress has been acknowledged as a major factor in aging, senescence and neurodegenerative conditions. Mammalian models are susceptible to these stresses following the restoration of oxygen after anoxia; however, some organisms including the freshwater turtle Trachemys scripta can withstand repeated anoxia and reoxygenation without apparent pathology. T. scripta thus provides us with an alternate vertebrate model to investigate physiological mechanisms of neuroprotection. The objective of this study was to investigate the antioxidant methionine sulfoxide reductase system (Msr) in turtle neuronal tissue. We examined brain transcript and protein levels of MsrA and MsrB and examined the potential for the transcription factor FOXO3a to regulate the oxygen-responsive changes in Msr in vitro. We found that Msr mRNA and protein levels are differentially upregulated during anoxia and reoxygenation, and when cells were exposed to chemical oxidative stress. However, while MsrA and MsrB3 levels increased when cell cultures were exposed to chemical oxidative stress, this induction was not enhanced by treatment with epigallocatechin gallate (EGCG), which has previously been shown to enhance FOXO3a levels in the turtle. These results suggest that FOXO3a and Msr protect the cells from oxidative stress through different molecular pathways, and that both the Msr pathway and EGCG may be therapeutic targets to treat diseases related to oxidative damage.

Funder

NIH - National Institute of Aging

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3