Author:
Antolic AnaMaria,Harrison Rosemarie,Farlinger Chris,Cermak Naomi M.,Peters Sandra J.,LeBlanc Paul,Roy Brian D.
Abstract
The purpose of the present investigation was to establish an in vitro mammalian skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated, whole muscles [soleus and extensor digitorum longus (EDL)] were dissected from Long-Evans rats and incubated for 60 min in Sigma medium 199 (1 g of resting tension, bubbled with 95% O2-5% O2, 30 ± 2°C, and pH 7.4). Medium osmolality was altered to simulate hyposmotic (190 ± 10 mmol/kg) or hyperosmotic conditions (400 ± 10 mmol/kg), whereas an isosmotic condition (290 ± 10 mmol/kg) served as a control. After incubation, relative water content of the muscle decreased with hyperosmotic and increased with hyposmotic condition in both muscle types ( P < 0.05). The cross-sectional area of soleus type I and type II fibers increased ( P < 0.05) in hyposmotic, whereas hyperosmotic exposure led to no detectable changes. The EDL type II fiber area decreased in the hyperosmotic condition and increased after hyposmotic exposure, whereas no change was observed in EDL type I fibers. Furthermore, exposure to the hyperosmotic condition in both muscle types resulted in decreased muscle ATP and phosphocreatine ( P < 0.05) contents and increased creatine and lactate contents ( P < 0.05) compared with control and hyposmotic conditions. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acute alterations in muscle water content and resting muscle metabolism.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献