Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes

Author:

Baquet A1,Lavoinne A2,Hue L1

Affiliation:

1. Hormone and Metabolic Research Unit, University of Louvain Medical School, and International Institute of Cellular and Molecular Pathology, ICP-UCL 7529, 75 avenue Hippocrate, B-1200 Brussels, Belgium

2. Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, U.F.R. Médecine-Pharmacie, avenue de l'Université, B.P. 97, F-76800 Saint-Etienne du Rouvray, France

Abstract

Several amino acids were found to stimulate glycogen synthesis and lipogenesis, and to inhibit ketogenesis in isolated rat hepatocytes. When hepatocytes were incubated in the presence of 20 mM-glucose, the amino acids could be classified in decreasing order of efficiency as follows: glutamine and proline, alanine, aminoisobutyric acid, asparagine and histidine for stimulation of glycogen synthesis; glutamine, proline and alanine for stimulation of lipogenesis; proline and glutamine for inhibition of ketogenesis. The study of the time course revealed that the rates were not linear and were preceded by a lag period. In all conditions studied, glutamine and proline were found to have similar quantitative effects on glycogen synthesis and lipid metabolism. However, their effects differ qualitatively. Indeed, the effects of proline on glycogen synthesis, lipogenesis and glutamate and aspartate content were faster. Moreover, proline increased the hydroxybutyrate/acetoacetate ratio, whereas glutamine did not change it. Incubation of hepatocytes with aminoisobutyric acid or under hypo-osmotic conditions, which increased cell volume and mimicked the amino acid-induced stimulation of glycogen synthesis, had little effect on lipogenesis. In hepatocytes incubated without glucose, ketogenesis was inhibited, in decreasing order of efficiency, by alanine, asparagine, glutamine and proline. Under these conditions, glutamine increased, alanine decreased and asparagine did not affect the concentration of malonyl-CoA. This indicates that the latter cannot be responsible for the inhibition of ketogenesis by alanine and asparagine.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3