Abstract
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius not observed in rats with a sterile abscess. Inhibition is associated with an impaired mRNA translation initiation that can be ameliorated by elevating IGF-I but not insulin. The present study investigated the ability of IGF-I signaling to stimulate protein synthesis in gastrocnemius by accelerating mRNA translation initiation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Protein synthesis in gastrocnemius from septic rats was accelerated twofold by the addition of IGF-I (10 nM) to perfusate. IGF-I increased the phosphorylation of translation repressor 4E-binding protein-1 (4E-BP1). Hyperphosphorylation of 4E-BP1 in response to IGF-I resulted in its dissociation from the inactive eukaryotic initiation factor (eIF) 4E·4E-BP1 complex. Assembly of the active eIF4F complex (as assessed by the association eIF4G with eIF4E) was increased twofold by IGF-I in the perfusate. In addition, phosphorylation of eIF4G and ribosomal protein S6 kinase-1 (S6K1) was also enhanced by IGF-I. Activation of mammalian target of rapamycin, an upstream kinase implicated in phosphorylating both 4E-BP1 and S6K1, was also observed. Thus the ability of IGF-I to accelerate protein synthesis during sepsis may be related to a stimulation of signaling to multiple steps in translation initiation with an ensuing increased phosphorylation of eIF4G, eIF4E availability, and S6K1 phosphorylation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献