Protein synthesis versus energy state in contracting muscles of perfused rat hindlimb

Author:

Bylund-Fellenius A. C.,Ojamaa K. M.,Flaim K. E.,Li J. B.,Wassner S. J.,Jefferson L. S.

Abstract

The goal of these studies was to evaluate acute changes in protein metabolism in skeletal muscle in response to contractile activity. Rates of protein synthesis were measured by following L-[U-14C]phenylalanine incorporation into protein in muscles of the perfused rat hindlimb at rest, during 10 min of maximal isometric muscle contractions, and during 10 min of recovery. Synthesis measurements were carried out under conditions that ensured that the specific radioactivity of the tRNA-bound precursor amino acid was equal to that of extracellular phenylalanine. Protein degradation was estimated by measuring the release of Nt-methylhistidine. Rates of synthesis were markedly inhibited in response to muscle contractions in tibialis anterior, gastrocnemius, and plantaris but were unaffected in soleus. Rates of synthesis returned toward those observed in the resting condition during the recovery period. Rates of degradation were also markedly inhibited in response to muscle contractions. Decreased rates of synthesis correlated with reduced tissue contents of ATP and creatine phosphate, a reduced ATP/ADP, and an elevated tissue content of lactate. The results demonstrate that isometric contractions in muscles consisting of a high proportion of fast glycolytic fibers result in a marked depression in rates of protein synthesis that may be due to an altered energy state.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3