Effects of combined aging and heart failure on visceral sympathetic nerve and cardiovascular responses to progressive hyperthermia in F344 rats

Author:

Margiocco M. L.1,Borgarelli M.1,Musch T. I.2,Hirai D. M.2,Hageman K. S.2,Fels R. J.2,Garcia A. A.2,Kenney M. J.2

Affiliation:

1. Clinical Sciences, Kansas State University, Manhattan, Kansas

2. Departments of 1Anatomy and Physiology and

Abstract

Sympathetic nerve discharge (SND) responses to hyperthermia are attenuated in aged rats without heart failure (HF) and in young HF (YHF) rats, demonstrating that individually aging and HF alter SND regulation. However, the combined effects of aging and HF on SND regulation to heat stress are unknown, despite the high prevalence of HF in aged individuals. We hypothesized that SND responses to heating would be additive when aging and HF are combined, demonstrated by marked reductions in SND and mean arterial pressure (MAP) responses to heating in aged HF (AHF) compared with aged sham HF (ASHAM) rats, and in AHF compared with YHF rats. Renal and splenic SND responses to hyperthermia (colonic temperature increased to 41.5°C) were determined in anesthetized YHF, young sham (YSHAM), AHF, and ASHAM Fischer rats. HF was induced by myocardial infarction and documented using echocardiographic, invasive, and postmortem measures. The severity of HF was similar in YHF and AHF rats. SND responses to heating were attenuated in YHF compared with YSHAM rats, demonstrating an effect of HF on SND regulation in young rats. In contrast, AHF and ASHAM rats demonstrated similar SND responses to heating, suggesting a prominent influence of age on SND regulation in AHF rats. Splenic SND and MAP responses to heating were similar in YHF, AHF, and ASHAM rats, indicating that the imposition of HF in young rats changes the regulatory status of these variables to one consistent with aged rats. These data suggest that the effect of HF on SND regulation to hyperthermia is age dependent.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3