Transepithelial organic anion transport by shark choroid plexus

Author:

Villalobos Alice R. A.12,Miller David S.13,Renfro J. Larry14

Affiliation:

1. Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672;

2. Department of Environmental Medicine, University of Rochester, Rochester, New York 14642;

3. Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; and

4. Department of Physiology and Neurobiology, University of Connecticut-Storrs, Storrs, Connecticut 06269

Abstract

Spiny dogfish shark ( Squalus acanthias) lateral and IV choroid plexuses (CPs) are ultrastructurally similar to the corresponding tissues of rat. However, shark IV CP is proportionally larger and easily accessible. Moreover, this epithelial sheet can be halved and studied in Ussing flux chambers. We have used confocal fluorescence microscopy and radiotracer techniques to characterize transepithelial transport of the organic anions (OAs) fluorescein (FL) and 2,4-dichlorophenoxyacetic acid (2,4-D), respectively, by shark CP. Lateral and IV CP accumulated 1 μM FL, with highest levels in the underlying extracellular spaces, intermediate levels in epithelial cells, and lowest levels in the medium. 2,4-D and probenecid inhibited FL accumulation in cells and extracellular spaces, suggesting that these substrates compete for common carriers. Unidirectional absorptive [cerebrospinal fluid (CSF)-to-blood] and secretory (blood-to-CSF) fluxes of 10 μM [14C]2,4-D were measured under short-circuited conditions in IV CP mounted in Ussing chambers. 2,4-D underwent net absorption, with an average flux ratio of 7. Probenecid, 2,4,5-trichlorophenoxyacetic acid, and 5-hydroxyindolacetic acid reduced net absorption, reversibly inhibiting unidirectional absorption, with no effect on secretion. Ouabain irreversibly reduced net 2,4-D absorption and cellular and extracellular accumulation of FL, suggesting energetic coupling of OA absorption to Na+transport. Collectively, these data indicate that shark CP actively removes OAs from CSF by a process that is specific and active.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3