Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish (Opsanus beta)

Author:

Sebastiani John1ORCID,Sabatelli Allyson1,McDonald M. Danielle1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami Department of Marine Biology and Ecology , , Miami, FL 33149, USA

Abstract

ABSTRACT Plasma serotonin (5-hydroxytryptamine, 5-HT) homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO) and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia, resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 Torr) or 2 min, 40 min or 24 h mild hypoxia (50% O2 saturation, ∼80 Torr), then injected with radiolabeled [3H]5-HT before blood, urine, bile and tissues were sampled. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart.

Funder

National Science Foundation

University of Miami

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3