Author:
Soria Leandro R.,Gradilone Sergio A.,Larocca M. Cecilia,Marinelli Raúl A.
Abstract
Glucagon stimulates the vesicle trafficking of aquaporin-8 (AQP8) water channels to the rat hepatocyte canalicular membranes, a process thought to be relevant to glucagon-induced bile secretion. In this study, we investigated whether glucagon is able to modulate the gene expression of hepatocyte AQP8. Glucagon was administered to rats at 0.2 mg/100 g body wt ip in 2, 3, or 6 equally spaced doses for 8, 16, and 36 h, respectively. Immunoblotting analysis showed that hepatic 34-kDa AQP8 was significantly increased by 79 and 107% at 16 and 36 h, respectively. Hepatic AQP9 protein expression remained unaltered. AQP8 mRNA expression, assessed by real-time PCR, was not modified over time, suggesting a posttranscriptional mechanism of AQP8 protein increase. Glucagon effects on AQP8 were directly studied in primary cultured rat hepatocytes. Immunoblotting and confocal immunofluorescence microscopy confirmed the specific glucagon-induced AQP8 upregulation. The RNA polymerase II inhibitor actinomycin D was unable to prevent glucagon effect, providing additional support to the nontranscriptional upregulation of AQP8. Cycloheximide also showed no effect, suggesting that glucagon-induced AQP8 expression does not depend on protein synthesis but rather on protein degradation. Inhibitory experiments suggest that a reduced calpain-mediated AQP8 proteolysis could be involved. The action of glucagon on hepatocyte AQP8 was mimicked by dibutyryl cAMP and suppressed by PKA or phosphatidylinositol-3-kinase (PI3K) inhibitors. In conclusion, our data suggest that glucagon induces the gene expression of rat hepatocyte AQP8 by reducing its degradation, a process that involves cAMP-PKA and PI3K signal pathways.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献