The Metabolic Pathway of Bile Secretion Is Vulnerable to Salmonella enterica Exposure in Porcine Intestinal Epithelial Cells

Author:

Cai Jiajia1,Chen Xiaolei2,Xu Chao2,Zhu Xiaoyang2,Wang Haifei23ORCID,Wu Shenglong12,Cai Demin4ORCID,Fan Hairui2ORCID

Affiliation:

1. Joint International Research Laboratory of Agriculture & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

2. Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

3. International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China

4. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Abstract

Pigs can be colonized with Salmonella enterica and become established carriers. However, the mechanisms of the host’s response to Salmonella enterica infection are largely unclear. This study was constructed with the Salmonella enterica infection model in vitro using porcine intestinal epithelial cells (IPEC-J2). Transcriptome profiling of IPEC-J2 cells was carried out to characterize the effect of Salmonella enterica infection and lipopolysaccharide (LPS) treatment, in which LPS-induced inflammation was a positive control. At first, Salmonella enterica infection increased the cell apoptosis rate and induced an inflammation response in IPEC-J2. Then, the up-regulated genes were enriched in metabolic pathways, such as those for bile secretion and mineral absorption, while down-regulated genes were enriched in immune-related pathways, such as the Toll-like receptor signaling and p53 signaling pathways. Moreover, we found 368 up-regulated genes and 101 down-regulated genes in common. Then, an integrative analysis of the transcriptomic profile under Salmonella enterica infection and LPS treatment was conducted, and eight up-regulated genes and one down-regulated gene were detected. Among them, AQP8 is one critical gene of the bile secretion pathway, and its mRNA and protein expression were increased significantly under Salmonella enterica infection and LPS treatment. Thus, the AQP8 gene and bile secretion pathway may be important in IPEC-J2 cells under Salmonella enterica infection or LPS treatment.

Funder

Key Research and Development Project (Modern Agriculture) of Jiangsu Province

Open Project Program of the International Joint Research Laboratory in Universities of Jiangsu Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3