FoxO1 is not a key transcription factor in the regulation ofmyostatin(mstn-1aandmstn-1b) gene expression in trout myotubes

Author:

Seiliez Iban1,Sabin Nathalie2,Gabillard Jean-Charles2

Affiliation:

1. Institut National de la Recherche Agronomique, UMR 1067 Nutrition Aquaculture et Génomique, Pôle d'hydrobiologie, St-Pée-sur-Nivelle; and

2. Institut National de la Recherche Agronomique, UR 1037 Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement, Equipe Croissance et Qualité de la Chair de Poisson, Campus de Beaulieu, Rennes, France

Abstract

In mammals, much evidence has demonstrated the important role of myostatin (MSTN) in regulating muscle mass and identified the transcription factor forkhead box O (FoxO) 1 as a key regulator of its gene expression during atrophy. However, in trout, food deprivation leads to muscle atrophy without an increase of the expression of mstn genes in the muscle. We therefore studied the relationship between FoxO1 activity and the expression of both mstn genes ( mstn1a and mstn1b) in primary culture of trout myotubes. To this aim, two complementary studies were undertaken. In the former, FoxO1 protein activity was modified with insulin-like growth factor-I (IGF-I) treatment, and the consequences on the expression of both mstn genes were monitored. In the second experiment, the expression of both studied genes was modified with growth hormone (GH) treatment, and the activation of FoxO1 protein was investigated. We found that IGF-I induced the phosphorylation of FoxO1 and FoxO4. Moreover, under IGF-I stimulation, FoxO1 was no longer localized in the nucleus, indicating that this growth factor inhibited FoxO1 activity. However, IGF-I treatment had no effect on mstn1a and mstn1b expression, suggesting that FoxO1 would not regulate the expression of mstn genes in trout myotubes. Furthermore, the treatment of myotubes with GH decreased the expression of both mstn genes but has no effect on the phosphorylation of FoxO1, FoxO3, and FoxO4 nor on the nuclear translocation of FoxO1. Altogether, our results showed that mstn1a and mstn1b expressions were not associated with FoxO activity, indicating that FoxO1 is likely not a key regulator of mstn genes in trout myotubes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3