Divergent roles of plasma osmolality and the baroreflex on sweating and skin blood flow

Author:

Lynn Aaron G.1,Gagnon Daniel1,Binder Konrad1,Boushel Robert C.2,Kenny Glen P.1

Affiliation:

1. Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada and

2. Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Plasma hyperosmolality and baroreceptor unloading have been shown to independently influence the heat loss responses of sweating and cutaneous vasodilation. However, their combined effects remain unresolved. On four separate occasions, eight males were passively heated with a liquid-conditioned suit to 1.0°C above baseline core temperature during a resting isosmotic state (infusion of 0.9% NaCl saline) with (LBNP) and without (CON) application of lower-body negative pressure (−40 cmH2O) and during a hyperosmotic state (infusion of 3.0% NaCl saline) with (LBNP + HYP) and without (HYP) application of lower-body negative pressure. Forearm sweat rate (ventilated capsule) and skin blood flow (laser-Doppler), as well as core (esophageal) and mean skin temperatures, were measured continuously. Plasma osmolality increased by ∼10 mosmol/kgH2O during HYP and HYP + LBNP conditions, whereas it remained unchanged during CON and LBNP ( P ≤ 0.05). The change in mean body temperature (0.8 × core temperature + 0.2 × mean skin temperature) at the onset threshold for increases in cutaneous vascular conductance (CVC) was significantly greater during LBNP (0.56 ± 0.24°C) and HYP (0.69 ± 0.36°C) conditions compared with CON (0.28 ± 0.23°C, P ≤ 0.05). Additionally, the onset threshold for CVC during LBNP + HYP (0.88 ± 0.33°C) was significantly greater than CON and LBNP conditions ( P ≤ 0.05). In contrast, onset thresholds for sweating were not different during LBNP (0.50 ± 0.18°C) compared with CON (0.46 ± 0.26°C, P = 0.950) but were elevated ( P ≤ 0.05) similarly during HYP (0.91 ± 0.37°C) and LBNP + HYP (0.94 ± 0.40°C). Our findings show an additive effect of hyperosmolality and baroreceptor unloading on the onset threshold for increases in CVC during whole body heat stress. In contrast, the onset threshold for sweating during heat stress was only elevated by hyperosmolality with no effect of the baroreflex.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3