Nitric oxide and fever: immune-to-brain signaling vs. thermogenesis in chicks

Author:

Dantonio Valter12,Batalhão Marcelo E.3,Fernandes Marcia H. M. R.4,Komegae Evilin N.5,Buqui Gabriela A.6,Lopes Norberto P.6,Gargaglioni Luciane H.12,Carnio Évelin C.3,Steiner Alexandre A.5,Bícego Kênia C.12

Affiliation:

1. Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil;

2. National Institute of Science and Technology-Comparative Physiology (INCT-Fisiologia Comparada), Rio Claro, São Paulo, Brazil;

3. Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;

4. Department of Animal Science, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil;

5. Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; and

6. Department of Physics and Chemistry, Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

Abstract

Nitric oxide (NO) plays a role in thermogenesis but does not mediate immune-to-brain febrigenic signaling in rats. There are suggestions of a different situation in birds, but the underlying evidence is not compelling. The present study was designed to clarify this matter in 5-day-old chicks challenged with a low or high dose of bacterial LPS. The lower LPS dose (2 μg/kg im) induced fever at 3–5 h postinjection, whereas 100 μg/kg im decreased core body temperature (Tc) (at 1 h) followed by fever (at 4 or 5 h). Plasma nitrate levels increased 4 h after LPS injection, but they were not correlated with the magnitude of fever. The NO synthase inhibitor ( NG-nitro-l-arginine methyl ester, l-NAME; 50 mg/kg im) attenuated the fever induced by either dose of LPS and enhanced the magnitude of the Tc reduction induced by the high dose in chicks at 31–32°C. These effects were associated with suppression of metabolic rate, at least in the case of the high LPS dose. Conversely, the effects of l-NAME on Tc disappeared in chicks maintained at 35–36°C, suggesting that febrigenic signaling was essentially unaffected. Accordingly, the LPS-induced rise in the brain level of PGE2 was not affected by l-NAME. Moreover, l-NAME augmented LPS-induced huddling, which is indicative of compensatory mechanisms to run fever in the face of attenuated thermogenesis. Therefore, as in rats, systemic inhibition of NO synthesis attenuates LPS-induced fever in chicks by affecting thermoeffector activity and not by interfering with immune-to-brain signaling. This may constitute a conserved effect of NO in endotherms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3