Escherichia coli lipopolysaccharides produce serotype-specific hypothermic response in biotelemetered rats

Author:

Akarsu Eyup S.,Mamuk Soner

Abstract

We investigated whether LPS-induced hypothermia develops in a serotype-specific manner in biotelemetered conscious rats. Two different Escherichia coli serotypes of LPSs were injected at a dose of 250 μg/kg ip. E. coli O55:B5 LPS elicited an initial hypothermia and subsequent fever, but E. coli O111:B4 LPS caused more potent monophasic hypothermia. Serum tumor necrosis factor (TNF)-α levels were dramatically elevated at the initial phase of the hypothermia induced by both LPSs. This elevation tended to subside at the nadir of E. coli O55:B5 LPS-induced response but progressively increased at the nadir of E. coli O111:B4 LPS hypothermia. Serum IL-10 levels were moderately elevated at the initial phase of the hypothermia and persisted at the same level at the nadir of each LPS-induced response. No change was observed at the serum IL-18 levels. A selective cyclooxygenase (COX)-1 enzyme inhibitor, valeryl salicylate (20 mg/kg sc), abolished the hypothermia without any effect on the elevated cytokine levels. Another COX-1-selective inhibitor, 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560; 1 mg/kg sc) inhibited hypothermic responses as well. Meanwhile, cytokine levels were also reduced by SC-560 treatment. These findings suggest that LPS-induced hypothermia may have serotype-specific characteristics in rats. E. coli O111:B4 LPS has more potent hypothermic activity than E. coli O55:B5 LPS; that may presumably be related to its higher or sustained capability to release antipyretic cytokines, such as TNF-α. COX-1 enzyme may be involved in the generation of the hypothermia, regardless of the type of LPS administered.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3