Effects of insulin-like growth factor-I, insulin, and leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary myocytes

Author:

Cleveland Beth M.1,Weber Gregory M.1

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia

Abstract

The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of 4-day-old rainbow trout myocytes. Supplementing media with 100 nM IGF-I increased protein synthesis by 13% ( P < 0.05) and decreased protein degradation by 14% ( P < 0.05). Treatment with 1 μM insulin increased protein synthesis by 13% ( P < 0.05) and decreased protein degradation by 17% ( P < 0.05). Supplementing media containing 0.6 mM leucine with an additional 2.5 mM leucine did not increase protein synthesis rates but reduced rates of protein degradation by 8% ( P < 0.05). IGF-I (1 nM–100 nM) and insulin (1 nM-1 μM) independently reduced the abundance of ubiquitin ligase mRNA in a dose-dependent manner, with maximal reductions of ∼70% for muscle atrophy F-box (Fbx) 32, 40% for Fbx25, and 25% for muscle RING finger-1 (MuRF1, P < 0.05). IGF-I and insulin stimulated phosphorylation of FOXO1 and FOXO4 ( P < 0.05), which was inhibited by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, and decreased the abundance of polyubiquitinated proteins by 10–20% ( P < 0.05). Supplementing media with leucine reduced Fbx32 expression by 25% ( P < 0.05) but did not affect Fbx25 nor MuRF1 transcript abundance. Serum deprivation decreased rates of protein synthesis by 60% ( P < 0.05), increased protein degradation by 40% ( P < 0.05), and increased expression of all ubiquitin ligases. These data suggest that, similar to mammals, the inhibitory effects of IGF-I and insulin on proteolysis occur via P I3-kinase/protein kinase B signaling and are partially responsible for the ability of these compounds to promote protein accretion.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3